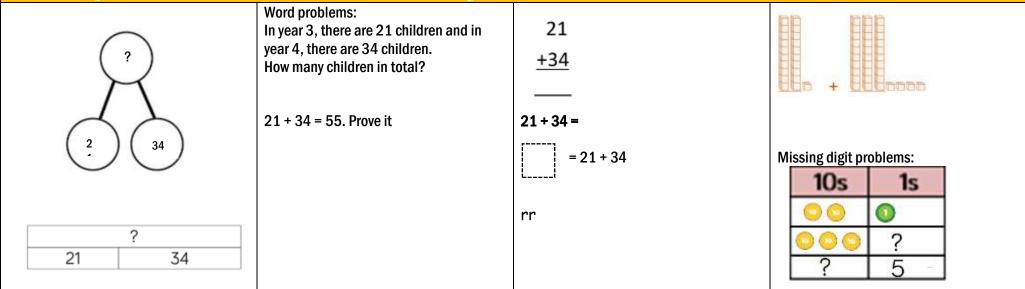

Calculation policy: addition


Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4 + 3 = 7 Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2
	?	4 5 6

Concrete	Pictorial	Abstract
T0 + T0 using base 10. Continue to develop understanding of partitioning and place value. 36 + 25	Chidlren to represent the base 10 in a place value chart.	Looking for ways to make 10. 36 + 25 = 30 + 20 = 50 5 + 5 = 10 50 + 10 + 1 = 61 36 Formal method: $\frac{+25}{61}$ 1
Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred.	Chidren to represent the counters in a place value chart, circling when they make an exchange. 100s 10s 1s $100s 10s 1s$	243 <u>+368</u> <u>611</u>
	6 1 1	- I

Conceptual variation; different ways to ask children to solve 21 + 34

Stem sentences

- Add the numbers in any order
- Answer should be bigger than the other two numbers
- Make sure numbers are lined up place value
- Use inverse to check

Calculation policy: subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

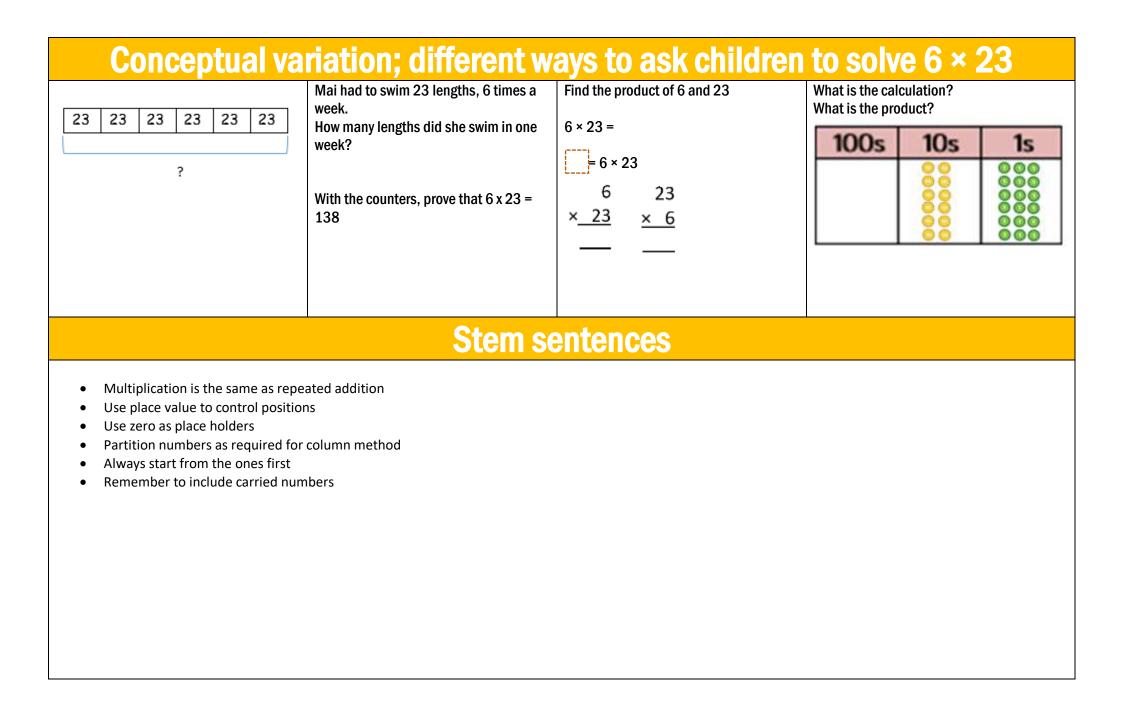
Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3 =
4 - 3 = 1	XXXX	$ \begin{array}{c} $
Counting back (using number lines or number tracks) children start with 6 and count back 2. 6 - 2 = 4	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
1 2 3 4 5 6 7 8 9 10	12345678910	012345678910
		46

Concrete	Pictorial	Abstract
Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. 8 – 5, the difference is
Calculate the difference between 8 and 5.		Children to explore why 9 - 6 = 8 - 5 = 7 - 4 have the same difference.
	<u>8</u> <u>7</u>	
Making 10 using ten frames. 14 – 5	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend.
$\begin{array}{c} \bullet \bullet$		$ \begin{array}{c} 14 - 5 = 9 \\ 4 & 1 \end{array} $
		14 - 4 = 10 10 - 1 = 9
Column method using base 10. 48-7	Children to represent the base 10 pictorially.	Column method or children could count back 7.
10s 1s 10s 1s 10s 1s 4 1	$\frac{10s}{11}$	4 8 - 7 4 1

Concrete	Pictorial	Abstract
Column method using base 10 and having to exchange. 41 - 26 10s 1s 10s 1s 10s 1s 10s 1s 10s 1s 10s 1s 15 10s 1s 1s 10s 1s	Represent the base 10 pictorially, remembering to show the exchange. 10s 1s 14R 1 1 5	Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41 = 30 + 11$.
Column method using place value counters. 234 - 88	Represent the place value counters pictorially; remembering to show what has been exchanged.	Formal colum method. Children must understand what has happened when they have crossed out digits. 2 ² 3 ⁴ 4 <u>- 88</u> <u>6</u>

Conceptual variation; different ways to ask children to solve 391 - 186				
391		Raj spent £391, Timmy spent £186. How much more did Raj spend?	= 391 - 186	Missing digit calculations
?		Calculate the difference between 391 and 186.	391 <u>-186</u> What is 186 less than 391?	3 9 - - - 6 - 0 5
391				
186	?			
Stem sentences				

- Take the smallest number away from the largest number
- Start from the ones and move left
- Use inverse to check
- Show on calculation when exchange has happened
- Answer should be smaller than the first number


Calculation policy: multiplication

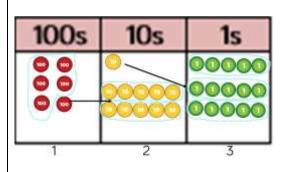
Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3 × 4 4 + 4 + 4 There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12
Number lines to show repeated groups- 3 × 4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4 = 12$

Concrete	Pictorial	Abstract	
Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5	
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used	
Formal column method with place value counters (base 10 can also be used.) 3×23	Children to represent the counters pictorially. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $3 \times 3 = 9$ $20 \ 3 60 + 9 = 69$ 23 $\frac{\times 3}{69}$	

Concrete	Pictorial	Abstract
Other cite Formal column method with place value counters. 6 x 23 Image: Colspan="2">Image: Colspan="2">Colspan="2">Contended Image: Colspan="2">Contended Image: Colspan="2">Image: Colspan="2">Contended Image: Colspan="2">Image: Colspan="2">Colspan="2">Image: Colspan="2">Colspan="2" Image: Colspan="2" Image: Colspan="2	Children to represent the counters/base 10, pictorially e.g. the image below.	Formal written method $6 \times 23 =$ 23 $\frac{\times 6}{138}$ 11 124 $\frac{\times 26}{-744}$ $\frac{-744}{2-480}$
		3 2 2 4 1 1 Answer: 3224

Calculation policy: division


Key language: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract
Sharing using a range of objects. 6 ÷ 2 2	Represent the sharing pictorially.	6 ÷ 2 = 3 3 Children should also be encouraged to use their 2 times tables facts.
Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$ -2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted. $ \begin{array}{r} $

Concrete	Pictorial	Abstract
 2d + 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. 13 ÷ 4 Use of lollipop sticks to form wholes- squares are made because we are dividing by 4. There are 3 whole squares, with 1 left over. 	Children to represent the lollipop sticks pictorially.	 13 ÷ 4 - 3 remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over'
Sharing using place value counters. $42 \div 3 = 14$	Children to represent the place value counters pictorially.	Children to be able to make sense of the place value counters and write calculations to show the process.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$42 \div 3 42 = 30 + 12 30 \div 3 = 10 12 \div 3 = 4 10 + 4 = 14$

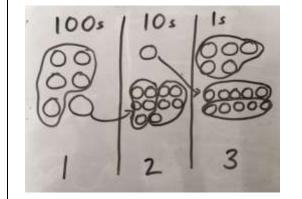
Concrete

Short division using place value counters to group. 615 ÷ 5

1. Make 615 with place value counters.

2. How many groups of 5 hundreds can you make with 6 hundred counters?

3. Exchange 1 hundred for 10 tens.


4. How many groups of 5 tens can you make with 11 ten counters?

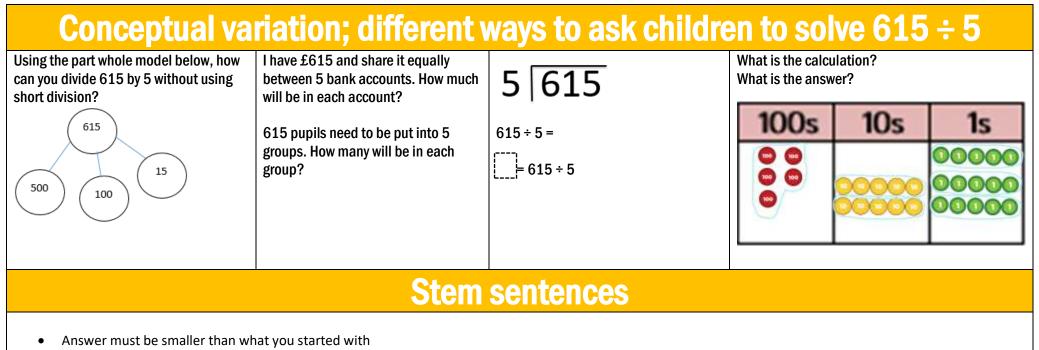
5. Exchange 1 ten for 10 ones.

6. How many groups of 5 ones can you make with 15 ones?

Pictorial

Represent the place value counters pictorially.

Abstract


Children to the calculation using the short division scaffold.

123

6¹1¹5

5

Concrete	Pictorial	Abstract
Long division using place value counters 2544 ÷ 12		
1000s 100s 10s 1s Image: Second Secon		
1000s 100s 10s 1s We can group 24 hundreds 02 into groups of 12 which leaves 12 with 1 hundred. 24		
1000s 10s 1s After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens. 12 12 24 12 24 12 24		
1000s 100s 10s 1s Image: Constraint of the state of		

- Larger number inside the bus stop
- In long division note down a few multiples of the divisor
- Use inverse to check
- Division is the same as repeated subtraction